Transparent Façade Panel Typologies Based on Hybrid Bio-composite and Recyclable Polymer Materials

نویسندگان

  • Harry Giles
  • Kyoung-Hee Kim
چکیده

Buildings are large consumers of energy. In the United States of America; they constitute over 33% of the total annual energy consumption, produce 35% of the total carbon dioxide emissions and attribute 40% of landfill wastes. The building industry is also a large consumer of non-renewable materials and this trend has escalated dramatically over the past century. It is essential that we find ways to save on energy consumption through the use of solar energy, improved thermal insulation, and alternative efficient glazed façade systems. In this paper, we demonstrate how alternative typologies of transparent and translucent loadbearing façade systems based on biocomposite and recyclable materials, are structurally and thermally efficient at the same time they contribute towards reduced pollutant emissions and non-renewable material uses. Composite insulated panel systems are used extensively in the engineering and building industry, owing to their structural and thermal efficiency. However, these systems are generally opaque and offer little flexibility in building applications. As an alternative, we demonstrate how building products comprised of hybrid material typologies can be made to perform efficiently as load-bearing façade systems that substitute for current glazing systems with adequate thermal and structural performance, which also possess good light transmission characteristics and integral shading capability. The materials are configured to work as composite panel systems made from a combination of bio-composite and recyclable polymer materials. These materials are environmentally sustainable, because they either originate from naturally grown renewable resources or are recyclable. Our research program includes the design and development of prototype panel systems; the evaluation of structural and thermal performance, together with their role in reducing energy consumption and pollution emission through life cycle analysis. The paper describes relevant applications and related current research activities, being carried out by the authors, under an EPA/NSF funded grant project, titled People, Prosperity and Planet, in relation to prototypical composite panel systems. Our current area of investigation relates to typologies that use thermoplastic polymers (as skin material) and biocomposites (as a core material). Our evaluations have demonstrated viable applications and improved performance compared to conventional single and double glazing systems in buildings. The paper also discusses the fundamentals of the research investigations and predicts good energy efficiency, making the product a sustainable alternative when used in building applications. The paper highlights areas of ongoing research and applications for hybrid composite façade systems, which will make the approach a viable option for the building industry, in the future. TRANSPARENT FAÇADE PANEL TYPOLOGIES BASED ON HYBRID BIO-COMPOSITE AND RECYCLABLE POLYMER MATERIALS Harry Giles, University of Michigan Kyoung-Hee Kim, University of Michigan

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very ...

متن کامل

Innovative Chemical Process for Recycling Thermosets Cured with Recyclamines® by Converting Bio-Epoxy Composites in Reusable Thermoplastic—An LCA Study

An innovative recycling process for thermoset polymer composites developed by Connora Technologies (Hayward, CA, USA) was studied. The process efficacy has already been tested, and it is currently working at the plant level. The main aspect investigated in the present paper was the environmental impact by means of the Life Cycle Assessment (LCA) method. Because of the need to recycle and recove...

متن کامل

Gas barrier properties of bio-inspired Laponite-LC polymer hybrid films.

Bio-inspired Laponite (clay)-liquid crystal (LC) polymer composite materials with high clay fractions (>80%) and a high level of orientation of the clay platelets, i.e. with structural features similar to the ones found in natural nacre, have been shown to exhibit a promising behavior in the context of reduced oxygen transmission. Key characteristics of these bio-inspired composite materials ar...

متن کامل

SYNTHESIS AND CHARACTERIZATION OF AN ENVIRONMENTALLY-FRIENDLY HYBRID NANOCOMPOSITE COATING

In this research, a kind of environmentally-friendly inorganic-organic hybrid nanocomposite coating based on silica containing titania/silica core/shell nanoparticles was synthesized and characterized for conservation of facade tiles in historical buildings. The matrix of the composite was prepared by sol-gel process via two methods of ultrasonic and reflux stirring. Tetraethyl orthosilicate (T...

متن کامل

Evaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite

Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006